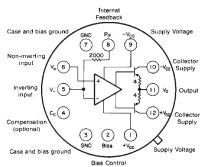

KH200 Fast Settling, Wideband Operational Amplifier


Features

- -3dB bandwidth of 95MHz
- 0.1% settling in 18ns
- 4000V/µs slew rate
- Low distortion, linear phase
- 3.6ns rise and fall times
- Direct replacement for CLC200

Applications

- Fast, precision A to D, D to A conversion
- Baseband and video communications
- Radar, sonar, IF processors
- Laser drivers, photodiode preamps
- High-density buffering
- Graphic CRT composite video drive amp

Pin 8 provides access to a 2000 ohm feedback resistor. Pin 2 allows the user to reduce the amplifier supply current or to turn the amplifier off completely.

Typical Performance

	gain setting						
parameter	+2	+20	+50	-2	-20	-50	units
-3dB bandwidth rise time (20V)	150	95 4	75 5	100 4	95 4	90 4	MHz ns
slew rate	4	4	4	4	4	4	V/ns
settling time (0.1%)		18	23	18	18	23	ns

General Description

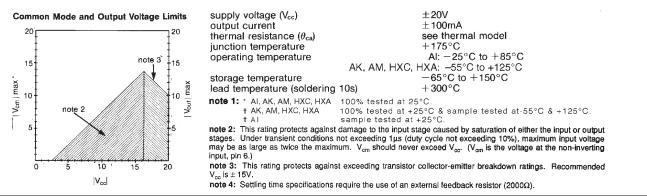
The KH200 operational amplifier achieves performance far superior to that of other high performance op amps. A current feedback design provides a bandwidth of DC-95MHz and an unprecedented settling time of 18nsec to 0.1%. And since thermal tail has been eliminated, the KH200 can be depended upon to settle fast and solidly maintain its level. Drive capability is also impressive at 24V_{pp} and 100mA.

Using the KH200 is as easy as adding power supplies and a gain-setting resistor. The result is reliable, consistent performance because such characteristics as bandwidth and settling time are virtually independent of gain setting. Unlike conventional op amp designs where the optimum gain bandwidth product occurs at a high gain, minimum settling time at a gain of -1, maximum slew rate at a gain of +1, et cetera, the KH200 offers predictable response at gain settings from ± 1 to ± 50 . This, coupled with consistent performance from unit to unit with no external compensation, makes the KH200 a real time and costsaver in design and production situations alike.

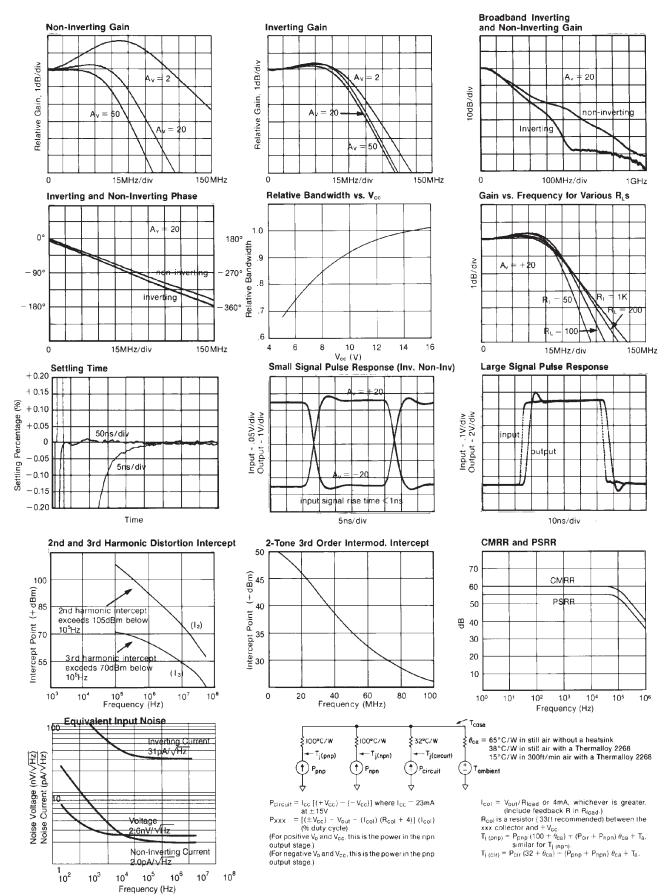
Minimizing settling time was a design goal of the KH200. Settling time is one of the most demanding of all op amp requirements since it is affected by the op amp's bandwidth, gain flatness, and harmonic distortion. The result of this effort is an amplifier fast enough for the most demanding high speed D to A converters and "flash" A to D converters.

The superior slew rate and rise and fall times of the KH200 make it an ideal amplifier for a broad range of pulse, analog, and digital applications. Flat gain and phase response from DC to beyond 50MHz ensure distortion levels well below those of other op amps. A full power bandwidth of 20MHz eliminates the need for power buffers in many applications.

The KH200 is constructed using thin film resistor/bipolar transistor technology, and is available in the following versions:


KH200AI KH200AK	-25°C to +85°C -55°C to +125°C	12-pin TO-8 can 12-pin TO-8 can,
		features burn-in and hermetic testing
KH200AM	-55°C to +125°C	12-pin TO-8 can, environmentally screened
		and electronically tested to MIL-STD-883
KH200HXC	-55°C to +125°C	SMD#: 5962-8991001XC
KH200HXA	-55°C to +125°C	SMD#: 5962-8991001XA

KH200 Electrical Characteristics ($A_v = +20V$, $V_{CC} = \pm 15V$, $R_L = 200\Omega$, $R_f = 2000\Omega$; unless noted)


	$ a(e) \leq a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < $	$20v, v_{CC} =$	$\pm 15V, K_{L} =$	$20052, R_{\rm f} =$	200052, um	ess noteu)	<u> </u>
PARAMETERS	CONDITIONS	TYP	MAX & MIN RATINGS ¹			UNITS	SYMBOL
Ambient Temperature	KH200AI	+25°C	–25°C	+25°C	+85°C		
Ambient Temperature	KH200AK/AM/HXC/HXA	+25°C	–55°C	+25°C	+125°C		
FREQUENCY DOMAIN RESPONSE							
+ –3dB bandwidth	V _{out} <2V _{pp}	95	> 85	> 85	> 80	MHz	SSBW
gain flatness at	$V_{out} < 2V_{pp}$						
+ peaking	0.1 to 25MHz	0	< 0.4	< 0.3	< 0.4	dB	GFPL
+ peaking	>25MHz	0.2	< 0.8	< 0.6	< 1.0	dB	GFPH
+ rolloff	at 50MHz		< 0.6	< 0.4	< 0.6	dB	GFR
group delay	to 50MHz	4.2 ± 0.5		_		ns	GD
linear phase deviation	to 50MHz	1	< 2	< 2	< 2	, C	LPD
reverse isolation	to 50MHz		. 50	50	50		
non-inverting		60 45	> 50 > 35	> 50 > 35	> 50 > 35	dB dB	RINI RIIN
inverting		40	> 35	> 35	> 35	uв	RIIN
TIME DOMAIN RESPONSE							
rise and fall time	2V step	3.6	< 4.1	< 4.1	< 4.4	ns	TRS
uli 1 000/	20V step	4	< 5	< 5	< 6	ns	TRL
settling time to .02%	10V step⁴ 10V step⁴	25 18	< 25	 < 25		ns	TSP TS
to .1% overshoot	10V step	5	< 12	< 25 < 10	< 25 < 10	ns %	OS
slew rate (overdriven input)	Tov step	4	> 3	> 3	>3	V/ns	SR
overload recovery		7		-0	-0	¥/113	011
<50ns pulse, 200% ove	rdrive	25		_		ns	OR
DISTORTION AND NOISE RI							
+2nd harmonic distortion	2V _{pp} , 20MHz	-52	< -45	< -45	< -45	dBc	HD2
+3rd harmonic distortion	2V _{pp} , 20MHz 2V _{pp} , 20MHz	-52	< -40	< -40 < -50	<-40	dBc	HD3
equivalent noise input	2 v pp, 201011 12	-30		< - 50	<-50	UDC	1100
noise floor	>100kHz	-156	< -150	< 150	< -150	dBm(1Hz)	SNF
integrated noise	1kHz to 100MHz	35	< 70	< 70	<70	μV	INV
noise floor	>5MHz	-156	<-150	<-150	<-150	dBm(1Hz)	SNF
integrated noise	5MHz to 100MHz	35	< 70	< 70	<70	μV	INV
						p. v	
STATIC DC PERFORMANCE							
*input offset voltage	a	10	< 25	< 25	< 25	mV	VIO
average temperature coef		35	< 120	< 120	< 120	μV/°C	DVIO
*input bias current	non-inverting	10 20	< 40	< 30 < 125	< 40 < 125	μΑ	IBN
average temperature coef	inverting	20	< 125 < 70	< 50	< 125	nA/°C μA	DIBN IBI
average temperature coeff	ficient	70	< 250	< 250	< 250	nA°/C	DIBI
*power supply rejection ratio		55	> 45	> 45	> 45	dB	PSRR
common mode rejection ratio		46	> 40	> 40	> 40	dB	CMRR
*supply current	no load	29	< 36	< 34	< 36	mA	ICC
MISCELLANEOUS PERFORMANCE							
non-inverting input	resistance	250	> 100	> 100	> 100	kΩ	RIN
Horr anyoning input	capacitance	2.4	<3	< 3	< 3	pF	CIN
ouput impedance	at DC		< 0.1	< 0.1	< 0.1	Ω	RO
	at 50MHz	1,35				Ω, nH	ZÓ
output voltage range	no load	±12	>±11	>±11	>±11	V,	VO
internal feedback resistor	absolute tolerance	< 0.4	l —	—	— I	%	RFA
Min/max ratings are based on prod	uct characterization and simi	Ilation Indiv	vidual naram	otors aro tos	hat as noted	Outgoing qual	lity lovels are

Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.

Absolute Maximum Ratings

KH200 Performance Characteristics ($A_v = \pm 20^{\circ}C$, $A_v = \pm 20$, $V_{CC} = \pm 15V$, $R_L = 200\Omega$; unless noted)

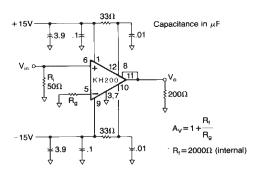


Figure 1: suggested non-inverting gain circuit

Controlling Bandwidth and Passband Response

As with any op amp, the ratio of the two feedback resistors R_f and R_g determines the gain of the KH200. Unlike conventional op amps, however, the closed loop pole-zero response of the KH200 is affected very little by the value of R_g . R_g scales the magnitude of the gain, but does not change the value of the feedback. This is possible due to a proprietary circuit topology. R_f does influence the feedback and so the KH200 has been internally compensated for optimum performance with $R_f{=}2000\Omega$, but any value of $R_f{>}1k\Omega$ may be used with a single capacitor placed between pins 4 and 5 for compensation. See Table 1. As R_f decreases, C_c must increase to maintain flat gain. Slew rate will decrease slightly with increasing C_c , but other parameters such as bandwidth, settling time, and phase linearity will improve. Large values of R_f and C_c can be used together or separately to reduce the bandwidth. This may be desirable for reducing the bandwidth in applications not requiring the full frequency response available although this may cause the output noise to increase at low gains.

Table 1: Bandwidth versus R_f and C_c

R t (kΩ)	-		[†] — 3.0dB (MHz)
10.0	0	5	15
5.0	0	10	30
3.0	0	20	60
2.0	0	50	100
1.5	0.25	70	130
1.0	0.50	120	170

Layout Considerations

To assure optimum performance the user should follow good layout practices which minimize the unwanted coupling of signals between nodes. During initial breadboarding of the circuit, use direct point to point wiring, keeping the lead lengths to less than .25". The use of solid, unbroken ground plane is helpful. Avoid wire-wrap type pc boards and methods. Sockets with small, short pin receptacles may be used with minimal performance degradation although their use is not recommended.

During pc board layout, keep all traces short and direct. The resistive body of R_g should be as close as possible to pin 5 to minimize capacitance at that point. For the same reason, remove ground plane from the vicinity of pins 5 and 6. In other areas, use as much ground plane as possible on one side of the board. It is especially important to provide a ground return path for current from the load resistor to the power supply bypass capacitors. Ceramic capacitors of .01 to .1 μ F (with short leads) should be less than .15 inches from pins 1 and 9. Larger tantalum capacitors should be placed within one inch of these pins. V_{cc} connections to pins 10 and 12 can be made directly from pins 9 and 1, but better supply rejection and settling time are obtained if they are separately bypassed as in Figures 1 and 2. To prevent signal distortion caused by reflections from impedance mismatches, use terminated microstrip of coaxial cable when the signal must traverse more than a few inches.

Since the pc board forms such an important part of the circuit, much time can be saved if prototype boards of any high frequency sections are built and tested early in the design phase. Evaluation boards designed for either inverting or non-inverting gains are available.

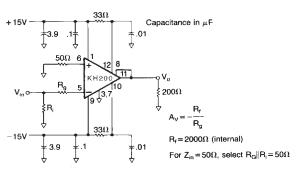


Figure 2: suggested inverting gain circuit

Distortion and Amplification Fidelity

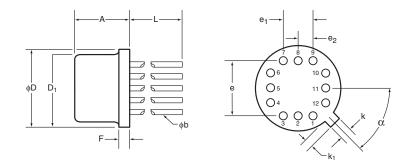
The graphs of intercept point versus frequency on the preceding page make it easy to predict the distortion at any frequency, given the output voltage of the KH200. First, convert the output voltage (V_o) to V_{RMS} = (V_{pp}/2 $\sqrt{2}$) and then to P = (10log₁₀(20V_{RMS}²)) to get output power in dBm. At the frequency of interest, its 2nd harmonic will be S₂ = (I₂-P)dB below the level of P. Its third harmonic will be S₃ = 2(I₃-P)dB below P, as will the two-tone third order intermodulation products. These approximations are useful for P<-1dB compression levels.

Approximate noise figure can be determined for the KH200 using the Equivalent Input Noise graph on the preceding page. The following equation can be used to determine noise figure (F) in dB.

$$F = 10 \log \left[1 + \frac{v_n^2 + \frac{i_n^2 R_F^2}{A_v^2}}{4kTR_s \Delta f} \right]$$

where v_n is the rms noise voltage and i_n is the rms noise current at the inverting node. Beyond the breakpoint of the curves (i.e., where they are flat), broadband noise figure equals spot noise figure, so Δf should equal one (1) and v_n and i_n should be read directly off the graph. Below the breakpoint, the noise must be integrated and Δf set to the appropriate bandwidth.

For linear operation of the KH200 at large output voltage swings (DC component not included) and at high frequencies, observe the (AC output voltage) \times (frequency) product specification of 400V · MHz. Exceeding this rating will cause the signal to be greatly distorted as the amplifier bias control circuit reduces the current available for slewing to prevent damage. At frequencies and voltages within this range the excess slew rate and bandwidth available will ensure the highest possible degree of amplified signal fidelity.


Operation with Reduced Bias Current

Placing a resistor between pins 1 and 2 will cause the KH200 bias current to be reduced. A value of 20K will cause only a slight reduction, 3K will almost halve the current, while less than 1K will reduce bias to about 5mA and the amplifier will be off. In this condition, the input signal will be greatly attenuated. In the reduced bias, on condition, bandwidth will be roughly proportional to the reduction in bias current. A mechanical or semiconductor switch can be used to turn the amplifier off. Any connection which would cause current to flow out of pin 2 will result in increased bias current and may lead to device destruction from overheating and excessive current.

Thermal Considerations

At high ambient temperatures or large internal power dissipations, heat sinking is required to maintain acceptable junction temperatures. Use the thermal model on the previous page to determine junction temperatures. Many styles of heat sinks are available for TO-8 packages; the Thermalloy 2240 and 2268 are good examples. Some heat sinks are the radial fin type which cover the pc board and may interfere with external components. An excellent solution to this problem is to use surface mounted resistors and capacitors. They have a very low profile and actually improve high frequency performance. For use of these heat sinks with conventional components, a.1" high spacer can be inserted under the TO-8 package to allow sufficient clearance.

KH200 Package Dimensions

TO-8							
SYMBOL	INC	HES	MILIMETERS				
OTMBOL	Minimun	Maximum	Minimum	Maximum			
A	0.142	0.181	3.61	4.60			
φb	0.016	0.019	0.41	0.48			
φD	0.595	0.605	15.11	15.37			
φD ₁	0.543	0.555	13.79	14.10			
e	0.400) BSC	10.16 BSC				
e1	0.200 BSC		5.08 BSC				
e ₂	0.100 BSC		2.54 BSC				
F	0.016	0.030	0.41	0.76			
k	0.026	0.036	0.66	0.91			
k ₁	0.026	0.036	0.66	0.91			
L	0.310	0.340	7.87	8.64			
α	45° BSC		45° BSC				

NOTES:

Seal: cap weld Lead finish: gold per MIL-M-38510 Package composition: Package: metal Lid: Type A per MIL-M-38510

Life Support Policy

Cadeka's products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of Cadeka Microcircuits, Inc. As used herein:

1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Cadeka does not assume any responsibility for use of any circuitry described, and Cadeka reserves the right at any time without notice to change said circuitry and specifications.